Дивергенция и ротор магнитного поля

Отсутствие "магнитных зарядов" означает то, что линии вектора \vec{B} замкнуты — нигде не начинаются и не заканчиваются. Отсюда следует, что поток \vec{B} через замкнутую поверхность равен нулю:

$$\oint_{S} \vec{B}d\vec{S} = 0 \tag{1}$$

По теореме Остроградского-Гаусса получаем:

$$\oint_{V} \vec{\nabla} \vec{B} dV = 0 \tag{2}$$

$$(\vec{\nabla}; \vec{B}) = 0 \tag{3}$$

Теперь вычислим циркуляцию \vec{B} по замкнутому контуру l, охватывающему прямой ток I, создающий магнитное поле:

$$\oint \vec{B} d\vec{l} \tag{4}$$

Известно, что поле прямого тока равно:

$$B = \frac{\mu_0 I}{2\pi r} \tag{5}$$

Здесь $\vec{r} \perp \vec{j}$. Модуль приращения $d\vec{l}$ вектора \vec{r} можно представить как $rd\alpha$. Получаем:

$$\oint \vec{B} d\vec{l} = \frac{\mu_0 I}{2\pi r} r \oint d\alpha \tag{6}$$

Если контур охватывает ток I, то $\oint d\alpha = 2\pi$. В противном случае, $\oint d\alpha = 0$.

Пользуясь принципом суперпозиции, можно утверждать, что циркуляция \vec{B} по замкнутому контуру равна сумме токов, охватываемых этим контуром, помноженной на μ_0 :

$$\oint \vec{B}d\vec{l} = \mu_0 I \tag{7}$$

Отсюда по теореме Стокса получаем выражение для ротора \vec{B} :

$$\int_{S} [\vec{\nabla}; \vec{B}] d\vec{S} = \mu_0 \int \vec{j} d\vec{S} \tag{8}$$

$$[\vec{\nabla}; \vec{B}] = \mu_0 \vec{j} \tag{9}$$